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We construct a double Regge exchange amplitude which has the proper analytic 
structure and which is phenomenologicaUy viable. The various couplings involved can 
be estimated using pole extrapolation techniques which are successful in two-body scat- 
tering. We explicitly calculate the double Regge exchange contributions to the well- 
measured, and related, processes K±p ~ K0~r±p and ~r-p ~ K-KOp. In this way the 
observed features of the dimeson partial-wave production amplitudes are used to test 
the double-exchange approach. 

1. Introduct ion 

Multi-Regge theory has played an important r01e in theoretical studies o f  multi- 
particle hadronic interactions [1,2]. However, its phenomenological validity has 
not yet been subjected to the same levelof  scrutiny as has Regge theory in two-body 
scattering [3,4]. In this paper, we shall set up a double Regge exchange amplitude 

1 + 1 + for the dimeson production reactions 0 -  ~ + 0 - 0 -  ~ , where the parameters can 
be completely determined from two-body scattering, and confront it with high- 
statistics data. 

Considerable use has been made of  the double Regge exchange amplitude for 
describing inelastic diffraction, for example the reggeised pion exchange Deck am- 
plitude [5 ]. In such applications the production amplitude phase is often difficult 
to observe experimentally and is usually assumed to be given by the product of  the 
two Regge signature factors. Strictly speaking, this last assumption is incorrect, 
since, in order to satisfy analyticity requirements, the reggeon-reggeon-particle ver- 
tex must also carry a non-trivial phase. By interfering our model amplitude with 
well-known resonance production amplitudes, we may investigate this subtle, but 
important, feature of  multi-Regge amplitudes. 

To our knowledge, this is the first attempt to predict the overall magnitude of  a 

344 



T. Shimada et al. /Double Regge exchange phenomenology 345 

multi-Regge amplitude *. The fact that such off-shell extrapolations work for the 
couplings in two-body scattering [6,4] is an important dynamical feature of hadronic 
processes, and encourages a similar test for 2 ~ 3 body scattering. Of course, this is 
as much a test of the precise t-dependent extrapolation functions (Regge residues) 
as of Regge pole behaviour itself (~sa(0). In the 2 ~ 2 case the Regge residues pre- 
dicted by the B4 dual amplitude give satisfactory results [4]. Here, in the 2 ~ 3 
case, we shall use the analogous residues predicted by the B s dual amplitude [7]. 

The reactions 

K-p  ~ K.°rr-p, (la) 

K+p ~ K°rr+p, (lb) 

7r-p ~ K - K ° p ,  (2a) 

rr+p -~ K+K°p , (2b) 

provide a convenient framework within which to investigate double Regge exchange. 
First, the double-exchange contributions to these processes are closely interrelated. 
Moreover, high-statistics data have recently been obtained for the first three pro- 
cesses, with the dimeson system scattered into the forward direction [8-11 ]. Thus, 
not only can we compare the double-exchange predictions with the data for an indi- 
vidual reaction, but we can make a more extensive investigation by comparing the 
agreement for a set of related reactions. 

Not only are the reggeon couplings to the external particles in processes 1 and 2 
well-known, but the reggeon-reggeon-particle couplings at the middle vertex can be 
related to equally weU-known coupling constants. A further advantageous feature 
of these processes is that all final state particles are stable so that there are no 
rescattering corrections to complicate the interpretation of phases, as, for example, 
they do in rrN ~ 7toN ~ rrrrrrN. 

The reactions of 1 and 2 are analogous to K+p and rr+p elastic scattering respec- 
tively; the sum of the cross sections for each pair measures the strength of the 
pomeron exchange component, while the difference measures the odd charge con- 
jugation (co and p) exchange contribution. Our knowledge of the pomeron in ine- 
lastic resonance production has recently been improved [12,13]. We shall pay some 
attention to its r61e in processes 1 and 2, with particular reference to the powerful f 
dominated pomeron scheme [14]. 

Ideally, one would like to compare the double Regge amplitude with high-energy 
I + data in which both 0 - 0 -  and 0 -  ~ sub-energies were large. However, most high- 

statistics spectrometer data are at relatively low 0 - 0 -  effective mass. This is not 
such a disadvantage in practice, since the prominent resonance production ampli- 
tudes in this region can be used as well-measured and well-understood reference 

* Although the reggeised Deck model is absolutely normalised, this is not a strong test, since 
the n exchange is not far off-shell. 
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waves with which to interfere the 0 - 0 -  partial waves thought to be due to double 
Regge exchange. This present investigation was, in part, motivated by the observa- 
tion [9] of anomalous partial-wave behaviour in processes 1. 

The organisation of the paper is as follows. In sect. 2 we construct a double 
Regge exchange amplitude, which has the proper analytic structure, and which can 
be explicitly evaluated for the dimeson production reactions under study. We 
describe how to determine the required Regge vertices from well-known couplings 
and we show how all the relevant double-exchange contributions are related one to 
another. We also discuss the inclusion of the pomeron. The comparison with the 
data is made in sect. 3. To be specific, it is the observed structures of the dimeson 
partial-wave amplitudes, which have been extracted [9,11] from the data, with 
which we confront the double exchange model. Our conclusions are given in sect. 4. 

2. Structure of the ampl i tudes  

In this section we describe the explicit form used to calculate the Kp --> Klrp and 
Irp ~ KI{p amplitudes. We describe the structure of the two-reggeon exchange con- 
tributions, and how the various couplings are determined. Then we discuss the 
model used to calculate the reggeon-pomeron contributions. 

2.1. Double Regge limit 

We wish to calculate the amplitude for a process of the type ab ~- 123 shown in 
fig. 1. For simplicity we first consider scalar external particles. The double Regge 
limit of the amplitude corresponds to sl, s2, s --> oo and ~ --- s/(a'sls2), tl, t2 fLxed. 

|1  

f 

Ct 1 

s 2 

0t 

J 
t~ 

Fig. 1. Kinematic variables for the process ab ~ 123. 
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The requirement that the amplitude is free of simultaneous discontinuities in two 
overlapping channel invariants leads to the general form [ 1] 

T = P ( -oq )  P(-ot2)[(-ot 's)~l(-ot 's2) a2-a l  Vl(r/, t l ,  t2) 

+ (-a's)°~2(-a'sl) ~1-'~2 Vz(rl, tl, t2)] , (3) 

where the reggeon.reggeon-particle vertex functions, Vi, are regular functions of 7?. 
The general form for the Vi follows from the Mellin representation for the signa- 
tured amplitude [ 1 ] 

( 1 ) 3  fdXfdJafdJ2r(-X)r(-Jl+ X)r(-J2 + ~,)(--Ott$1) J l -h  

X (-a's2)S2-x(-a's)Xa rlr2 (J1, J2, X; tl, t2). (4) 

If the partial-wave amplitude has a dominant double Regge pole singularity, 

a-1,2 ~ #Ca, tl, t2) 
(:l -- (~l)(J2 -- &2) ' (5) 

then moving the Ji contours, and collecting the residues of these poles, we find, as 
Sl ' S2 ---~ oo 

1 
fdxr(-x) r(-a  + x) l-'(-a2 + ~k)(--OttS 1) a l - h  

2zri 

X (-a'Sz)a2-x(-a's)X[3C A, tl, t2). 

Now on closing the helicity contour to the left, and picking up the helicity poles in 
the last two F functions, we obtain 

o o  

Vl(r/, tl, t2) = r ' ( -ax) lr(-~2) 

×/3(al - n, tl, t2), 

1 
r(- l + n) + Ot I - -  n)  rU n 

(6) 

with an identical expression for 1:2 except that al  ~ a.2. The minimal choice for the 
residue,/3ca, q,  t2) =/30 with/30 independent of X, thus leads to the concise parame- 
trization 

r ( c q - ~ 2 )  ( - ~)  
VI =/30 -r-(-~--~2-) 1El al ,  1 - al + a 2 , -  (7) 

and V2 = Vl(al o a2). This agrees with the double Regge limit of the scalar dual 
amplitude [7]. 

We are concerned with a process ab ~ 123 in which three of the external parti- 
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cles are pseudoscalar. In this case the above representation applies to the kinematical 
singularity free amplitude 7 ~ defined by 

with 

T = K T ,  (8) 

K = ec~¢76 (P3 - Pb)a(P3 + Pb)3(Pa -- Pl)q'(Pa + P l )  8 

= -4MpaPaPl sin X sin 0x sin 4~1 , (9) 

where ×(s, t2) is the crossing angle between the s and t channel helicity frames for 
the quasi-two-body process ab -+ (12)3; 01 and ~1 specify the decay angles in the 
(12) rest frame and M is the mass of  the (12) system. 

The dynamics of  the reactions are controlled by T. However, at low masses (M) 
the angular variations observed in ITI 2 come mainly from the kinematical factor K 
of eq. (8). This is because J" is dominated by low partial waves * and because, in 
any case, phase space limits the range across which T may vary. At low mass or 
energy, therefore, a comparison of ITI 2 with the experimental distributions may 
simply check the K factor [15] .  On the other hand, if we compare K -+ initiated 
reactions (i.e. the difference between related amplitudes at the same point in phase 
space), or study partial-wave phases, we shall probe the dynamics (7) rather than 
the trivial kinematic function K. 

In the double Regge limit IKI - 7/sxs2, and this implies 

a l _ i  a 2 - - 1  
sl s2 • (10) 

Further, we consider Regge trajectories ax, a2 with lowest (exchange-degenerate) 
particle spin 1. To obtain the form of  T we therefore need to make the replacements 
ai -+ ai - 1. That is, eq. (3) becomes 

T = KF(1 - ax) 1-'(1 - ol2)[(-olts)°tl-l(-oit$2) Ot2-Otl ~'r 1 

+ , ( 1 1 )  

with (cf. eq. (7)) 

F(cq - a2) ( _~) (12) 
Vl ( r / ' t l '  t2)=/3° F ( 1 - a 2 )  1El 1 - a l ' 1 - ° t l + ° t 2 ' -  " 

Using eq. (11) to construct signatured amplitudes we obtain [1] 

T r1~'2 = -KI'(1 - ~l) 1-'(1 - a2) 

× fq + f:2], (13) 

* Since K ~ sin 01 sin ~1 ~ Y~(01,01) + YI-I(01, 0IL P wave dominance of T corresponds to 
T ~ const. 
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where the signature factors are 

~i l (Ti + --irtOti = e )~ 

Note that, in a numerical evaluation of the amplitude, care is needed as the ver- 
tex functions contain "spurious" poles. These arise from l-'(al - a2) in 1)'1 and 
P(a2 - 0q) in 112 whenever ai - a/takes non-positive integral values with al,  a2 
non-integer. These poles cancel in the expression for the amplitude. For example, 
with the minimal choice of residue,/3Qt; tl, t2) = t3o independent of ~t, the poles 
arising from F(t h - c~2) of V1 cancel with the poles arising from 1F1 ('", 1 - a2 ÷ 
al .... ) of  112. 

A cruder approximation than/3 =/3o is to include only a single term (n = 0) in the 
inf'mite series for the Vi functions, provided ~7 >>  1. In this case the above cancel- 
lation mechanism is destroyed, and only the first "spurious" pole (corresponding 
t o  0~ 1 - -  0t 2 = 0 )  is killed. We must then only include the first pole in F(ai - aj) by 
making the approximation F(ai  - or/) ,~ 1/(a i - or~), This two-stage approximation 
is the procedure adopted in the analysis of Berger and Vergeest [16]. 

However to study the partial-wave amplitudes of the (12) system we require the 
amplitude over the whole kinemafically allowed s2 and tl region for fixed values of 
s, t2 and s i = 342. Moreover, in the natural parity-exchange sector which we analyse, 
we cannot expect such strong peripherality of the amplitude as that arising from rr 
exchange. Indeed the kinematical factor requires the amplitudes to vanish at the 
boundary ellipse of the kinematical region. We therefore evaluate the full power 
series, eq. (12), taking care to avoid errors arising from the "spurious" poles. 

2. 2. Exchanges  and coupling s tructure 

The double-exchange amplitudes which we consider for the Kp ~ Krrp reactions 
are shown in fig. 2. There are two types: those with a fast forward K (type I) and 
those with a fast forward 7r (type II). To evaluate a double Regge exchange diagram 
(ab ~ 123) we note that the coupling/30 appearing in eqs. (12) and (13) is given by 
the product of two reggeon-particle-particle couplings,/3~al/3R ~, and one reggeon- 
reggeon-particle coupling 7 R 1R2. The former couplings are accessible from 0-~+ -* 
0-~  + scattering. For these we use the simple coupling scheme described in appen- 
dix A of ref. [4] which satisfies the constraints of SU(3) * and exchange degeneracy 
(EXD): 

T(ab ~ 13) =/31a/3Rb~R(0t  ) r ( 1  - oO(a's)':'. (14) 

This is the Regge limit of a B 4 dual amplitude and is related by factorisation to the 

* The only symmetry breaking allowed is in the trajectory functions [17]. 
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Fig. 2. Double Regge exchange diagrams for the reactions K+p ~ K0n+-p. The numbers in 
brackets are the relative weights (see table 1). 

analogous double Regge limit of  Bs. To demonstrate this we rewrite eq. (13) in the 
form 

r ~1 --I 
T(ab  -~ 123)  = -K/~lal  ~1 (oq) r ( 1  -- aX)(~ Sl)  R r l r 2 ( a x ,  a2)  

R2 
X fl3b ~2(0L2) V(1 - a2)(ot's2) a2-1 , (I  5) 

where 

R1R2 r 0t1--1~--1~ 7. 
Rrlr2  = 3'2 lr/ g2 ~21 V1 + T/a2--1~?l~12 ['~r2]/~0 " (16) 

The evaluation o f  the couplings is effected by  pole extrapolat ion [4]. I f  rx = 
r2 = - 1 ,  the amplitude of  eq. (15)behaves  as 

1 o la  oR2= R I R 2 v  1 
T(ab -+ 123) ~ ~-~ /~RlP3 6 "J'2 ax (t l  - m])(t2 - m 2) (17) 

near ot 1 ( t l )  = 1, 0t2(t2) = 1. Likewise, near a = 1, the amplitude of  eq. (14)behaves  as 

s , (18) T(ab ~ 13) ~ 3~a/3R b t -- rn ~ 
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so that 

T(ab-+ 123) 7 RR K 

T(ab-+13) a,2 s t - m ~  (19) 

in the simple case where Rx = R2 = R (only one type of Regge exchange). 
Ifg(RiR22) is some suitably normalised 1 -1 - 0 -  coupling constant [18], the 

ratio of the Born-term amplitudes corresponding to eq. (19) is 

TB(ab ~ 123) K 1 
- g ( R R 2 )  (20)  

TB(ab~13) 2s t - m  2" 

Comparing eqs. (19) and (20), we find 

7 RR = -~ g(RR2) a ,2 .  (21) 

A knowledge ofg(Rl R22) therefore allows the calculation of the reggeon-reggeon- 
particle residue 3, R1R2. For this purpose, we choose g(~o~r) which may be calculated 
from Pto~arr using a O pole-dominance model [4,18]. We fred 

7°_ ~ = 7.1 . (22) 

We also use [4] 

3~ °K- = - 5 . 7 ,  t3% = 8.1. (23) 

The values and conventions are those of ref. [4] except that here we use the signa- 
ture factor z + e -ina rather than 1 + re -i~ra. Notice that the external couplings, 
such as 3~ K and 3~p, are already known to describe data in the physical region 
(tl, t2 < 0). The only untested extrapolation is that used to evaluate the coupling, 
7R 1R2, at the middle vertex. 

Now using the couplings of eqs. (22) and (23) we may evaluate the contribution 
of the exchange diagram of fig. 2a. This contribution is given by eqs. (13) and (12) 
with 

30 = t3r'°K-v ° ~  o~ 
0 7r- ~pp " 

To determine the magnitudes and signs of the other diagrams of fig. 2 we apply 
SU(3) and EXD. To accomplish this we use the elegant quark diagram method 
developed by Eylon [19]. The quark diagrams are shown in fig. 3 and the corre- 
sponding weights are given in table 1. We refer to Eylon [19] for details but some 
explanatory notes are in order. First, all relevant (connected) quark diagrams are 
constructed (fig. 3). A given double exchange (al, a2) contributes to all the quark 
diagrams equally up to a plus or minus sign. The rule to determine the sign is simple: 
the sign is given by the product of the charge-conjugation eigenvalues of the trajec- 
tories corresponding to twisted qffl propagators [ 19]. 

The rows of the table give the different (al, a2) contributions which are linked 
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QUARK DIAGRAMS 

TYPE I TYPE IT 

K- reaction: 

- s  , , l ~  o $ ~ _ ~ K U'n'- 

p o a-~--II , 'Up , , p  _ _  d P 

(k) (B) (C) 

K + reaction: 

K + ~ s  K* SK° ~ ' ' - u • I T +  

p dp - -  P d p 

(O} (E) (F} 

Fig. 3. The quark diagrams for K-+p --+ K07r-+p, required for determining the weights listed in 
table 1. 

by EXD. That is we need to interrelate the four independent types of couplings; 
TT, VT, TV and VV, where T and V denote tensor and vector exchange. Recall 
that each of these four amplitudes has the signature structure 

A~l,~2 = 1 [.4 + r l  AO) + r2A (2) + r l r 2  A ( l ' 2 ) ]  , (24) 

where, for example, A O) is related to A by the single substitution s I + - Sl, and 
where we have omitted the subscripts ~1, a2 on the right hand side. It is straight- 
forward to relate the quark topology of the diagrams in fig. 3 to the signature struc- 
ture [19]. For example, to fmd the total amplitude, T, for the type II diagram with 

Table 1 
The weights for the double Regge exchange diagrams, (A)-(F) of fig. 3, for K+p --~ KOrr-+p 

Quark diagram Weight Weight for (a I , a 2) exchange 

Type I (A2, f) (p, f) (A2, co) (p, to) 
K - :  (A)+ (B) 1 +C1C2 2 0 0 2 
K+: (D) + (E) C1 + C2 2 0 0 - 2  

Type II (KT, f) (Kv, f) (KT, co) (Kv, co) 
K - :  (C) CI 1 -1  1 -1  
K+: (F) CIC2 1 -1  -1  1 

C i is the charge parity of the exchange trajectory a i. Note that ~0 of subsect. 2.2 corresponds 
to the Co, co) contribution, 2 T - - ,  to K07r- production. 
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an incident K - ,  we need to sum over the four Regge terms 

T= ¢ , A . , . :  = (25) 
Otl,~2 tVl,~ 2 

with Aal,a 2 given by eq. (24). The first equality arises because the diagram has a 
quark twist Cl, the second because the relevant exchanges have Cl r l  = 1. In gen- 
eral therefore, T contains sixteen terms. However in the EXD limit the A~a2  are 
independent of al ,  a2 and so, on summing over r l ,  r2 = +1 in eq. (25), we are left 
with just the A (1) contributions, that is 

T =A (1) . 

In other words, in the EXD limit we may identify a quark twist with a signature 
twist. Since we wish to investigate the EXD breaking of trajectories we need to use 
the full form. That is, we calculate the signatured amplitudes of  eq. (13) and take 
the full sum such as eq. (25). Finally, to obtain the reaction amplitude we sum * 
over the type I and type II diagrams for that reaction. This corresponds to summing 
the exchange diagrams of fig. 2 using the weights shown in brackets. 

The above procedure allows us to determine all the relevant double-exchange 
contributions to the K-+p ~ K°rr-+ p processes. For the reaction rr-p ~ K - K ° p  we 
need only a subset of these double-exchange terms, namely those with oq = Kv,  KT 
and a2 = IP, f, co. Note that for KI( production, K r and Kv now contribute to 
diagrams of both type I and type II. These contributions can be evaluated using a 
similar procedure to that described above for the Krr production reactions. 

We note that the coupling calculation concerns only the leading vector/tensor 
Regge poles. We have assumed magic mixing for the co, and likewise for the f. We 
leave the inclusion of pomeron exchange to subsect. 2.3. We have neglected all iso- 
spin one (a2) exchanges (including unnatural parity) since this is known to be a 
good first approximation for the equivalent on-shell processes K~p ~ K*±p, 
7r-+p ~ A~p etc. Furthermore we consider only nucleon non-flip isoscalar couplings, 
since both the isoscalar helicity-flip and the isovector non-flip couplings are known 
to be small. 

2.3. Inclusion o f  the pomeron 

In this section we wish to determine the double-exchange amplitudes of fig. 2 
with f replaced by pomeron exchange. We must therefore adopt some model for 
the pomeron. We use the f-dominated pomeron scheme proposed by Carlitz, Green 
and Zee [14] in which the SU(3) singlet pomeron is taken to couple via f and f '  
mesons. The SU(3) breaking arises explicitly from the f, f '  mass difference. This 

* Note that there are no neutral isovector exchanges, (uu-dd)/x/2, to give rise to additional 
minus signs from -dd exchange. 
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simple and plausible scheme gives good agreement with elastic scattering data. How- 
ever a study [12] of the data for the reactions np -~ A2p, Kp ~ K 'p ,  which are 
relevant to us, indicates that the pomeron component for these reactions is about 
half the strength of that for elastic scattering. We must take note of this fact when 
applying the scheme to the double-exchange diagrams (see sect. 3). We should add 
that we do not consider the alternative pomeron-f identity scheme [20] as this has 
difficulties in reproducing the data, particularly for these relevant meson-production 
reactions [21]. 

Motivated by the f-dominated pomeron scheme we obtain a double-exchange 
(al,  a2 = aw) amplitude by replacing the a2 Regge pole in eq. (5) as follows 

1 7fn, Blp "/flP 
~ -  , (26) 

• / 2 - - a 2  J 2 - ° ~ f  J 2 - a I P  J2--°Lf 

where for simplicity we have omitted the t2 arguments. The middle term is the 
(SU(3) singlet) pomeron singularity itself. 3'fv is the pomeron-pomeron-f coupling. 
We should add a similar f '  contribution to the first term; we will allow for this when 
we determine the relevant couplings. Since the lower vertex contains only non- 
strange quarks, only the f contributes to the third term. 

Inserting the pomeron singularity, eq. (26), into the Mellin representation, via 
eq. (5), and performing the helicity integration as in subsect. 2.1 we f'md the 
(al,  aw) amplitude is, to leading order, again given by eqs. (12) and (13) with the 
replacements a2(t2) --> aw(t2) and 

30 -~ (alp(t2) -Otf(t2)) 2 = 31p(t2), (27) 

where again we assume no helicity dependence of the pole residue. Note that the 
Steinmann constraints are still preserved. 

The relevant pomeron couplings can be easily obtained from those given in table 
1 for the f. We need only recall the pomeron-to-f coupling ratios for two-body reac- 
tions shown in table 2. The factor r in the table is given by 

r(t) - alp - 0 ~ f  (28) 
alp - af' 

and accounts for the possibility of f '  coupling at the meson vertex. The departure 
of r from unity represents the SU(3) mass-breaking effect. The ratios of table 2 em- 
body the result that, in the symmetry limit, the pomeron decouples from K*(890) 
production due to generalized charge conjugation invariance. In conclusion, we see 
that the pomeron couplings appropriate to the double-exchange diagrams can be 
obtained from the f couplings of table 1 provided that the type II diagram entries 
of + I are replaced by (+ 1 + r). Of course, the pomeron couplings, 3w, contain in 
addition the overall x factor of table 2. 

We should note that in extending the f-dominated pomeron model to our 2 ~ 3 
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Table 2 
The pomeron-to-f coupling ratios predicted by the f, f' dominated pomeron model 

355 

~rN + lrN KN + KN 
rrN + A2N KN + K*(1420)N 

x (1 + r)x 

KN ~ K*(890)N 

(1 - r)x 

Contrary to the expectations of the model there is evidence [ 12] to suggest x is not the same 
for elastic and production reactions, namely x(el) ~ 2x(prod). 

body reactions we are applying the coupling scheme to a pomeron-particle-reggeon 
vertex, where the reggeon is either A2 or a K*. Moreover the original model was 
motivated for the imaginary part o f  the amplitude. For the 2 ~ 3 body application 
the corresponding rrp ~ "A2"p (or Kp ~ "K*"p) real part is not  necessarily small. 

3. A p p l i c a t i o n  t o  Kp ~ Knp and np ~ Kg, p data 

High-statistics spectrometer data [8 -11  ] have recently been obtained for the 
reactions 

K - p  ~ K ° r r - p ,  

K+p ~ K°rr+p, 

7r-p ~ K - K ° p ,  

at a laboratory momentum of  10 GeV/c, with the dimeson system produced in the 
forward scattering region. These data have been analysed to determine the partial- 
wave dimeson production amplitudes, and the results provide a suitable testing 
ground for our double-exchange model. 

3.1. Resum~ o f  the results o f  the amplitude analyses 

The K ± initiated reactions are found [9,22] to be dominated by K*(1-),  K*(2+), 
resonance production by isoscalar natural parity exchange (NPE). The t dependence 
of  K* resonance production for the K ± initiated reactions show a forward turnover 
and exhibit a cross-over near - t  = 0.3 (GeV/c) 2. The cross-over is more pronounced 
for K*(2 +) than K*(1-)  production. These features can be qualitatively described 
by a IP, f and ~o exchange picture for the quasi two-body reactions K±p ~ K*±p [9]. 
However, the data allow not only the extraction of  the resonant amplitudes, but 
also of  the KTr partial-wave amplitudes off  resonance [9]. It is the behaviour o f  
these amplitudes which allows a novel test of  double Regge exchange. Moreover, 
the data allow the interference between the resonant and off-resonance NPE ampli- 
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tudes to be determined. In particular we have empirical knowledge of both the 
magnitude and phase of the P wave Krr production amplitude in an extensive Kn 
mass interval covering the K*(1420) resonance region, for both K ~ initiated reac- 
tions. We stress two surprising features of the behaviour of the off-resonance P wave 
amplitudes [9], with which to confront the double Regge exchange model. First 
for MK~r ~ 1.2 GeV we fred P wave KTr production for the K ÷ reaction is signifi- 
cantly stronger than that for the K -  reaction, whereas in the K*(890) region these 
P waves are of approximately equal strength. This can be seen by comparing the 
production amplitudes shown in fig. 4. The second surprising feature is the value of 
the observed phase of the P wave production amplitude in the K*(1420) region. 
Both K -+ data were used to extract the phases of the even- and odd-signature ex- 
change contributions to the NPE amplitudes. After allowing for the P wave Kzr 
decay phase, the phase of the odd-signature exchange is approximately opposite to 
that found in the P wave resonance region, which agreed nicely with the expecta- 
tions of  co exchange for K~p -+ K*(890)-* p. 

Consider the reaction n - p  ~ K-K°p.  Again the data are sufficient for a partial- 
wave analysis of  the K - K  ° production amplitude [11 ]. The behaviour of the result- 
ing NPE amplitudes as a function of K - K  ° mass and as a function of t are shown 
in figs. 4 and 5 respectively. Now G parity invariance at the meson vertex restricts 
the even (odd) K - K  ° angular momentum states to be produced via G = +1 ( -1 )  
exchange. Thus, considering just NPE, we see that D, G ... wave K - K  ° production 
proceeds by IP and f exchange, whereas P, F ... wave K - K  ° production is due to co 
exchange. This difference is apparent in the data. We see that NPE produces the 
even-spin states, A2(2 ÷) and A2(4+), more copiously than those with odd spin, such 
as the g(3-) .  The double Regge exchanges relevant to rr-p -~ K - K ° p  are a subset of 
those also necessary to describe the KTr production reactions. Thus the K - K  ° data * 
offer a more selective test of the double-exchange model. 

Since we are using known phenomenological couplings to calculate the double 
Regge exchange contributions we not only predict the relative behaviour of the ob- 
served partial-wave amplitudes, but also the overall normalization for the above 
three reactions. 

3.2. Partial-wave amplitudes 

To be specific, consider the observed process K+p -+ K°rr+p. The K°rt + partial. 
wave production amplitudes have been extracted from the data, both as a function 
of tz  (=tpp) and of sl (=MS), where Mis the mass of the K°Tr + system. Our aim is 
to explain the observed features of these amplitudes in terms of the explicit double- 
exchange contributions specified in sect. 2. We must therefore project our ampli- 
tude, T(s, Sl, s2; tl, t2), describing the process ab ~ 123 of fig. 1, into partial-wave 

* Note that, even if available, 7r+p ~ K+g.Op would not give further independent information on 
isoscalar NPE. 
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Fig. 4. The magnitudes of the dimeson partial-wave amplitudes, TL, extracted from the data 
[9,11 ] compared with the absolute predictions of the double exchange model (shown by the 
curves) for (a) K±p -* KO~r+-p, and (b) rr-p --* K-K0p at 10 GeV/c. The amplitudes are normal- 
ized so that their moduli squared give the contribution to da/d3~. The t intervals are 0.1 < 
- t  < 0.4 (GeV/c) 2 and 0.07 < - t  < 1 (GeV/c) 2 for (a) and (b) respectively. The D waves of 
the K -  induced reaction are omitted since they are almost the same as for the K + reaction. 

ampli tudes for the (12)  system. We use TL to denote  the ampli tude for the produc-  

t ion o f  a (12)  system o f  angular m o m e n t u m  L,  and hel ici ty  one,  by natural  pari ty 
exchange.  Thus 

1 2~r 

rL=v  f dcosO, f 
-1 0 

| *  - - 1 "  d$1 T(s, Sl, S2;tl ,  t2) [Y/~ (01, ~bl) + Y/, (01, ¢1)]  , 

(29)  
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shown by the curves, are absolute predictions. The data are from ref. [11]. 

where 01, ~1 are the polar angles, in the (12) rest frame, specifying the direction 
of particle 1 with respect to the ab + (12)3 production plane. We use the t-channel 
helicity frame. In this frame 

tl = m~ +m2a - 2EaE 1 + 2papx cos 01 , 

s2 =m~ + m ~ +  2E2E 3 - 2 p 2 p a ( s i n  01 cos~b 1 s i n x + c o s 0 1  c o s x ) ,  (30) 

where X is the crossing angle between the s and t channel frames describing the 
decay o f  the (12)system. Note that the full amplitude satisfies T(2~r - qS) = -T(¢ ) ,  
since T of  eq. (8) depends only on cos ~1 (via s2), and the kinematical factor K is 
proportional to sin ¢1 (see eq. (9)). Thus we can transform to limits (0, 7r) for the 
¢1 integration. 

There is a slight complication due to the occurrence of the two types of  double. 
exchange diagrams in subsect. 2.2, namely those with a fast forward K ° (type I) 
or a fast forward ~r + (type II). That is the K ° is particle 1 (particle 2) for type I 
(type II). Eqs. (29) and (30) are appropriate for type I diagrams. For a type II dia- 
gram we should take (0 x, 4q) = (Tr - 0 K, qSK + 7r) in eq. (30) and integrate over 
(OK, ~K) in eq. (29). 

In order to compare our predictions with the data it is convenient to group the 
various double-exchange possibilities, T~1~2, into those with ot 2 = co, f and IP. Thus 
for the reaction K - p  ~ K°rr -p  we first form 

Tf(,~,K) = 2TA2f(~2K) + T K T f ( - - ~ K )  -- T K v f ( - - ~ K )  , 

Ttu(g2K) = 2Tpto(g2K) - TKvco(--~K) + TKTtO(--I2K), (31a) 
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and for the f-dominated pomeron, 

TIp(~K) = 2TA21P(~K) + (1 + r) TKTIP ( -  ~K) -- (1 -- r) TKvip (--~K) , (31b) 

where ~K -- (OK, ~bK) and -~2 K = (Tr - 0K, ~b K + lr). Here we have used the weights 
given in tables 1 and 2. To form the amplitudes for the reactions K±p ~ K°;r+p we 
take the combinations 

T(K +) = rip + Tf T- rio . (32) 

We have mentioned above that the double Regge exchange contributions to the 
three processes are interrelated. If  we use the partial-wave projections we can show 
the connection explicitly. For simplicity, consider the EXD and SU(3) limit. In 
this limit the 7"1, 7"2 exchanges satisfy 

T++(g2) = TA2f(~2 ) = TKTf(~'-~) , 

T - - ( ~ )  = Tpw(~2) = TKvw(~2 ) , 

T+-(n)  = TKTtO(n), T - + ( n )  = TKvf(~2). (33) 

Now the partial wave projection, eq. (29), satisfies 

TL = x / ~ f d r Z  T(~) [YL(~)  + Yg ' (n ) ]  * 

= ( - 1 ) L x / ~ f d n  T ( - n ) [ r 2 ( n )  + YZ-~(n)] * . 

Thus we can relate the type I and type II exchange contributions (cf. fig. 2). The 
results for the three reactions are given in table 3. This table emphasises the impor- 
tance of  comparing the model predictions for the individual partial waves, as well 

Table 3 
The double Regge exchange contributions, eq. (33), to the partial-wave projection of the ampli- 
tudes, defined in eq. (31), in the EXD and SU(3) limit 

K+-p ~ K%r+p 7r-p ~ K-K0p 

odd L even L odd L even L 

Tf T~ + + TL -+ 3T++L -- T-+L 0 2T++L + 2TL "+ 

_ T + -  ro~ 3 r ~ -  r +-L r E - +  L 2 r £ - +  2r~-  0 

L is the angular momentum of the produced dimeson system. 
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as for the different reactions. Moreover, due to the cancellation between type I and 
type II diagrams, our double-exchange model embodies the C parity selection rules 
for pomeron exchange, and also for K - K  ° production. 

3.3. Comparison with the data 

In this subsection we compare the predictions of  the double-exchange model o f  
sect. 2 with the observed amplitudes for K+-p -+ K°rr-+p and 7r-p -+ K - K ° p  discussed 
in subsect. 3.1. Consider first the behaviour of  the various partial-wave amplitudes 
as a function of the mass of  the produced dimeson system. In fig. 4 we compare 
the NPE amplitudes, TL, extracted directly from the data with those predicted by 
the exchange model. The model predictions are Obtained by calculating the double 
Regge exchange contributions of  the form of  eq. (13), with a(0) = 0.5 for 19, co, A2, 
f and  ct(0) = 0.35 for Kv and KT. We take linear trajectories of  slope ct' = 0.9 GeV -2 
for all reggeons. The couplings are determined as described in sect. 2. 

The pomeron exchange contributions (a l ,  a2 = t~ip) can be determined, via fac- 
torization, in terms of the quasi-two-body reaction amplitudes for the production 
of  resonances on the a l  trajectory. We take the pomeron parameterization of ref. 
[12], which is found to give a reasonable description of  these quasi-two-body pro- 
cesses. Though we use exactly this parametric form [12], it is equivalent, to a good 
approximation, to writing/31p of eq. (27) in the form 

fliP =/3o eA tXp/N/fr , 

with t =- t2, A = 2.5 GeV -2.  As described in sect. 2 we adopt the f-f '-dominated 
pomeron scheme to relate/3ip to the normal reggeon couplings/30, using the em- 
pirical value [12] xp = 0.5. We take Ctip = 1 + 0.2t. 

To calculate the required partial-wave projections, TL, we perform the integra- 
tions of  eq. (29) numerically. Witli our normalization the cross section is 

do _ q12 1 ~ [TLI 2 (34) 
dMdt 128rrp[m 2 (2rr) 3 L 

with t - t2. In the figures we have renormalized the amplitudes so that their moduli 
squared give the contribution to do/dM or do/dt directly. 

Recall that the model predictions have no free parameters, and that the overall 
normalization is determined. The comparison with the data shows that, on average, 
the normalization is very reasonable. Indeed, the agreement should be regarded as 
good considering the extrapolation necessary to estimate the exchange couplings. 
The observed cross section for KTr production is much larger * than for KK produc- 
tion. This behaviour is satisfactorily reproduced by the model. Moreover, we see 
that the model describes the relative magnitudes of  the partial-wave amplitudes for 

* This difference is more than is apparent from fig. 4, since fig. 4a corresponds to a smaller t 
interval than fig. 4b. 
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a given reaction, surprisingly well. This is support for the non-trivial double-exchange 
systematics, which were displayed in a simplified form in table 3. 

We can only expect an exchange model approach to reproduce dimeson reso- 
nance behaviour as, at best, broad enhancements. In fact, the individual partial 
waves do show just such enhancements at roughly the expected mass, and moreover 
the double-exchange contributions conspire to give an associated resonant-type 
phase behaviour. This resonant behaviour is associated with the sampling of larger 
and larger regions of two-dimensional phase space with increasing dimeson mass. 
The behaviour appears analogous to the Schmid loops of 2-body scattering, but we 
now have different amplitude zero structure [ 16]. Also only one loop occurs in 
each partial wave and daughter states do not appear. The phases predicted by the 
model can be compared with the single Regge limit for Kp ~ K*p ~ Kzrp obtained 
from the same pseudoscalar dual formula using the same choice of sign of the 
couplings. These two predictions are in good agreement, with the exception of the 
odd-signature P wave. This agreement is remarkable considering that in the model 
we take the sum of several exchange amplitudes. 

It is instructive to compare the t dependence of the data and the model for 
7r-p ~ K-K°p in the g mass region. The comparison, for the NPE amplitudes, is 
shown in fig. 5. Here the background partial waves, TD and Tc, exceed the resonant 
wave TF; the former arise from a2 = IP, f and the latter from a2 = co. Again, we see 
that the magnitudes of the partial waves, and also their t2 dependence, are in 
striking agreement with the double-exchange picture. The forward turnover is due 
to the kinematic factor, K = sin 01 sin ~1, but the remaining tz = tpp dependence of 
the model is non-trivial. In addition to the a2(t2) dependence, we note that the s2 
and tl integration region increases with increasing - t2 .  This leads, for example, to 
a flatter t2 dependence for TG than TD, in agreement with the data. 

Let us compare the behaviour of the P wave KTr amplitudes for the K +- initiated 
reactions in more detail. First consider the mass behaviour shown in fig. 4. The 
double Regge exchange model predicts Tp for the K ÷ reaction to be larger than for 
the K -  reaction, particularly for M ~ 1.2 GeV. The data do show evidence of a 
similar trend, but the occurrence of the K*(890) resonance makes it difficult to 
assess the level of agreement with the exchange model prediction. The P-D inter. 
ference manifest in the data allow the phases of the NPE P wave amplitudes to be 
determined in the K*(1420) mass region. These phases, together with those of the 
resonant D wave, are shown in fig. 6 by drawing the observed amplitudes on Argand 
plots. Instead of showing the individual reaction amplitudes, we plot the even- and 
odd-signature exchange combinations, that is TL (K-)  + TL (K +) respectively. The 
knowledge of these phases allows a more subtle test of the double Regge exchange 
picture. The model predictions, shown by the dashed lines, are seen to be in rea- 
sonable agreement with the observed amplitudes. The agreement is particularly 
significant for the odd-signature P wave amplitude because, as mentioned in sub- 
sect. 3.1, if the single co exchange picture were applied to Kp -~ (Kzr)p we would 
Find approximately the opposite sign [9] (shown by the dotted line on fig. 6). 
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NPE AMPLITUDES IN THE K*(lt~20) REGION 
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Fig. 6. The Argand diagrams for the even- and odd-signature NPE amplitudes for K+p 
K0~r+-p in the K*(1420) mass region and the t interval 0.1 < - t  < 0.4 (GeV/c) 2. We compare 
the P and D wave K~r amplitudes extracted from the data [ 11] (solid lines) with those of the 
model (dashed lines). To allow for mass averaging the D wave data amplitudes are plotted as 
half the peak values. For clarity, the P wave plot has been doubled in size relative to that for 
the D wave. The dotted line is a naive expectation for the odd-signature P wave phase (see 
text). The factor i arising from the square brackets of eq. (29) is omitted from both the data 
and model predictions. 

Finally, we should mention that  our approach is very different to a study of  the 
same set of  reactions made several years ago [23] using a crossing symmetric Bs 
model. We use phenomenologically determined couplings to evaluate double- 
exchange contributions and so are able to make absolute predictions for both  the 
magnitudes and phases of  the amplitudes. Our only use of Bs is in the extrapolat ion 
required to estimate the reggeon-reggeon-particle coupling. By necessity, the pome- 
ron contributions were ignored in ref. [23] ; since then it has been recognized that  
pomeron exchange makes a major contribution.  We have compared our predictions 
for Krr and KI~ product ion at PL = 10 GeV/c. However, if  we evaluate the double- 
exchange model at lower momenta  we f'md the (kinematic) enhancement of  Klr 
production (roughly a factor of  10 above KI~ product ion)  as also occurs in ref. [23]. 

4. Conclusions 

We have described how one may make absolute predictions for the double 
Regge limit of  high-energy processes involving three-body f'mal states. The ampli- 
tudes were shown to have the correct analytic and factorization properties and yet  
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be in a form suitable for comparison with experimental data. We demonstrated how 
to link together the various double-exchange contributions to a given reaction am- 
plitude, and how to evaluate these contributions in terms of known coupling con- 
stants. In particular, we showed how an f-dominated pomeron singularity could be 
incorporated. 

Ideally, one should compare with 2 ~ 3 body reaction data which is truly in the 
double Regge kinematical region, say sl, s2 > 5 - 1 0  GeV 2. In practice, the majority 
of data, even at high beam energy, occurs dominantly in the resonance region of Sl 
or s2. The Kp ~ KTrp and rrp ~ K, Kp data, with which we have compared, are no 
exception. However, we have seen that there are compensations in that one has 
access to more detailed information in this region (the behaviour of individual par- 
tial-wave amplitudes, interference phases, and the relation to single Regge exchange 
resonance production amplitudes). 

Clearly, we should not expect a double-exchange approach to give detailed agree- 
ment with the empirical reaction amplitudes in the resonance region. Rather, we 
have investigated whether double-exchange calculations can be used to give a mea- 
ningful estimate of the average strength of a 2 -+ 3 body reaction. It is important to 
recall that, since we used known couplings, there are no free parameters. Our con- 
clusion is that, just as in two-body scattering, one can use dual-model inspired 
Regge residues to obtain absolute predictions for the overall strength of a 2 ~ 3 
body process by pole extrapolation. We found the level of agreement with data is 
as good as in the two-body case. 

In carrying out these calculations we showed how to evaluate and how, using 
quark counting rules, to interrelate the double-exchange contributions. We included 
two types of exchange diagrams, namely types I and II, which are distinguished by 
which of the two produced mesons is the fast forward particle. Although a given 
2 ~ 3 body reaction amplitude is the sum over many such exchange contributions, 
the empirical knowledge of the partial-wave amplitudes for each of the three related 

+ 0 + - -  reactions (K p ~ K 7r-p, 7r p -+ K-K°p)  allowed a more selective and detailed 
study. 

The double-exchange model is found to reproduce some of the more subtle 
mass and t dependent experimental features of these diffractively produced dimeson 
systems. In particular, the relative P, D, F, G ... wave production strengths; and the 
relative magnitudes and phases observed in the K ÷ and K -  initiated reactions. We 
found the relative strength of pomeron and Regge exchange is correctly predicted 
by the model, which relates it to that in on-shell resonance production. The model 
also gives a reasonable simultaneous description of the observed features of ~rp -+ 
KKp and Kp ~ Klrp reactions. This not only tests the SU(3) and EXD relations 
between the Regge residues, but also the SU(3) structure of the f-dominated pome- 
ron amplitudes. 

Although such an exchange model should not be judged by comparison with 
resonance production amplitudes, it is interesting to note that the partial-wave pro- 
jection of the double-exchange reaction amplitudes reveal resonant-type behaviour 
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in both magnitude and phase. These correspond well to the obserVed dimeson 
resonances, except that they are broader. Surprisingly, with one exception, the 
phase predicted by the model is in agreement with the quasi-two-body prediction, 
that is with the sum of the single Regge K* production phase and the resonant 

decay phase. 
We conclude that the double-exchange model should give meaningful absolute 

estimates of 2 -~ 3 body reaction amplitudes for arbitrary final state kinematics at 
high beam energies. In addition to its phenomenological and theoretical interest, 
we note that predictions from the model may be valuable in performing acceptance 
calculations for future experiments. 

We wish to thank Peter Collins and David Webber for useful discussions during 
the course of this work, and to acknowledge the support of the Science Research 

Council. 
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